Lipschitz modulus in convex semi-infinite optimizationviad.c. functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Infinite Optimization under Convex Function Perturbations: Lipschitz Stability

This paper is devoted to the study of the stability of the solution map for the parametric convex semi-infinite optimization problem under convex function perturbations in short, PCSI. We establish sufficient conditions for the pseudo-Lipschitz property of the solution map of PCSI under perturbations of both objective function and constraint set. The main result obtained is new even when the pr...

متن کامل

Non-Lipschitz Semi-Infinite Optimization Problems Involving Local Cone Approximation

In this paper we study the nonsmooth semi-infinite programming problem with inequality constraints. First, we consider the notions of local cone approximation $Lambda$ and $Lambda$-subdifferential. Then, we derive the Karush-Kuhn-Tucker optimality conditions under the Abadie and the Guignard constraint qualifications.

متن کامل

Calmness Modulus of Linear Semi-infinite Programs

Our main goal is to compute or estimate the calmness modulus of the argmin mapping of linear semi-infinite optimization problems under canonical perturbations, i.e., perturbations of the objective function together with continuous perturbations of the right-hand side of the constraint system (with respect to an index ranging in a compact Hausdorff space). Specifically, we provide a lower bound ...

متن کامل

Modulus of convexity for operator convex functions

Most of the interesting examples deal with operators that are positive semi-definite. We shall follow the same convention in this paper. Operator convex functions are known to satisfy a number of interesting properties. An important discovery was made by Hansen and Pederson, who used Eq.1 in order to obtain an operator generalization of the Jensen inequality.[1] Recently, Effros provided an ele...

متن کامل

Metric Regularity in Convex Semi-Infinite Optimization under Canonical Perturbations

This paper is concerned with the Lipschitzian behavior of the optimal set of convex semi-infinite optimization problems under continuous perturbations of the right hand side of the constraints and linear perturbations of the objective function. In this framework we provide a sufficient condition for the metric regularity of the inverse of the optimal set mapping. This condition consists of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations

سال: 2008

ISSN: 1292-8119,1262-3377

DOI: 10.1051/cocv:2008052